Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Directed energy system technology for the control of soilborne fungal pathogens and plant-parasitic nematodes.

Identifieur interne : 000240 ( Main/Exploration ); précédent : 000239; suivant : 000241

Directed energy system technology for the control of soilborne fungal pathogens and plant-parasitic nematodes.

Auteurs : Ekaterini Riga [États-Unis] ; Jason D. Crisp [États-Unis] ; Gordon J. Mccomb [États-Unis] ; Jerry E. Weiland [États-Unis] ; Inga A. Zasada [États-Unis]

Source :

RBID : pubmed:31943776

Descripteurs français

English descriptors

Abstract

BACKGROUND

It is challenging to manage soilborne pathogens and plant-parasitic nematodes using sustainable practices. Here, we evaluated a novel energy application system, Directed Energy System (DES). This system generates pulses of energy capable of impacting selected biological organisms. The oomycete Phytophthora cinnamomi, the fungus Verticillium dahliae, and the plant-parasitic nematodes Meloidogyne hapla and Globodera ellingtonae were added to soil. Then DES-generated energy was applied to soil and impacts on target organisms were determined.

RESULTS

DES applied at 20, 40 and 70 J cm

CONCLUSION

DES-generated energy reduced survival of the soilborne pathogens P. cinnamomi and V. dahlia, and the plant-parasitic nematodes M. hapla and G. ellingtonae. The application of this technology to a field setting remains to be considered. Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Pest Management Science published by Wiley Periodicals, Inc. on behalf of © 2020 Society of Chemical Industry.


DOI: 10.1002/ps.5745
PubMed: 31943776


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Directed energy system technology for the control of soilborne fungal pathogens and plant-parasitic nematodes.</title>
<author>
<name sortKey="Riga, Ekaterini" sort="Riga, Ekaterini" uniqKey="Riga E" first="Ekaterini" last="Riga">Ekaterini Riga</name>
<affiliation wicri:level="2">
<nlm:affiliation>Lisi Global Inc, Richland, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lisi Global Inc, Richland, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Crisp, Jason D" sort="Crisp, Jason D" uniqKey="Crisp J" first="Jason D" last="Crisp">Jason D. Crisp</name>
<affiliation wicri:level="2">
<nlm:affiliation>Lisi Global Inc, Richland, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lisi Global Inc, Richland, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mccomb, Gordon J" sort="Mccomb, Gordon J" uniqKey="Mccomb G" first="Gordon J" last="Mccomb">Gordon J. Mccomb</name>
<affiliation wicri:level="2">
<nlm:affiliation>Lisi Global Inc, Richland, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lisi Global Inc, Richland, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Weiland, Jerry E" sort="Weiland, Jerry E" uniqKey="Weiland J" first="Jerry E" last="Weiland">Jerry E. Weiland</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zasada, Inga A" sort="Zasada, Inga A" uniqKey="Zasada I" first="Inga A" last="Zasada">Inga A. Zasada</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31943776</idno>
<idno type="pmid">31943776</idno>
<idno type="doi">10.1002/ps.5745</idno>
<idno type="wicri:Area/Main/Corpus">000296</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000296</idno>
<idno type="wicri:Area/Main/Curation">000296</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000296</idno>
<idno type="wicri:Area/Main/Exploration">000296</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Directed energy system technology for the control of soilborne fungal pathogens and plant-parasitic nematodes.</title>
<author>
<name sortKey="Riga, Ekaterini" sort="Riga, Ekaterini" uniqKey="Riga E" first="Ekaterini" last="Riga">Ekaterini Riga</name>
<affiliation wicri:level="2">
<nlm:affiliation>Lisi Global Inc, Richland, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lisi Global Inc, Richland, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Crisp, Jason D" sort="Crisp, Jason D" uniqKey="Crisp J" first="Jason D" last="Crisp">Jason D. Crisp</name>
<affiliation wicri:level="2">
<nlm:affiliation>Lisi Global Inc, Richland, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lisi Global Inc, Richland, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mccomb, Gordon J" sort="Mccomb, Gordon J" uniqKey="Mccomb G" first="Gordon J" last="Mccomb">Gordon J. Mccomb</name>
<affiliation wicri:level="2">
<nlm:affiliation>Lisi Global Inc, Richland, WA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Lisi Global Inc, Richland, WA</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Weiland, Jerry E" sort="Weiland, Jerry E" uniqKey="Weiland J" first="Jerry E" last="Weiland">Jerry E. Weiland</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zasada, Inga A" sort="Zasada, Inga A" uniqKey="Zasada I" first="Inga A" last="Zasada">Inga A. Zasada</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Pest management science</title>
<idno type="eISSN">1526-4998</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Soil (MeSH)</term>
<term>Tylenchida (MeSH)</term>
<term>Verticillium (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Sol (MeSH)</term>
<term>Tylenchida (MeSH)</term>
<term>Verticillium (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Tylenchida</term>
<term>Verticillium</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Sol</term>
<term>Tylenchida</term>
<term>Verticillium</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>It is challenging to manage soilborne pathogens and plant-parasitic nematodes using sustainable practices. Here, we evaluated a novel energy application system, Directed Energy System (DES). This system generates pulses of energy capable of impacting selected biological organisms. The oomycete Phytophthora cinnamomi, the fungus Verticillium dahliae, and the plant-parasitic nematodes Meloidogyne hapla and Globodera ellingtonae were added to soil. Then DES-generated energy was applied to soil and impacts on target organisms were determined.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>DES applied at 20, 40 and 70 J cm</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>DES-generated energy reduced survival of the soilborne pathogens P. cinnamomi and V. dahlia, and the plant-parasitic nematodes M. hapla and G. ellingtonae. The application of this technology to a field setting remains to be considered. Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Pest Management Science published by Wiley Periodicals, Inc. on behalf of © 2020 Society of Chemical Industry.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">31943776</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1526-4998</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>76</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Pest management science</Title>
<ISOAbbreviation>Pest Manag Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Directed energy system technology for the control of soilborne fungal pathogens and plant-parasitic nematodes.</ArticleTitle>
<Pagination>
<MedlinePgn>2072-2078</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/ps.5745</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">It is challenging to manage soilborne pathogens and plant-parasitic nematodes using sustainable practices. Here, we evaluated a novel energy application system, Directed Energy System (DES). This system generates pulses of energy capable of impacting selected biological organisms. The oomycete Phytophthora cinnamomi, the fungus Verticillium dahliae, and the plant-parasitic nematodes Meloidogyne hapla and Globodera ellingtonae were added to soil. Then DES-generated energy was applied to soil and impacts on target organisms were determined.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">DES applied at 20, 40 and 70 J cm
<sup>-3</sup>
to P. cinnamomi and V. dahliae resulted in ≥50% and 92% reductions (respectively) of propagules per gram of soil in comparison to the untreated control. There was a significant reduction of M. hapla eggs per gram of host tomato root between the untreated control, and 2.2, 13 and 25 J cm
<sup>-3</sup>
DES dosages applied pre- or post-planting. Additionally, an 84% reduction in hatch from G. ellingtonae encysted eggs after treatment with 70 J cm
<sup>-3</sup>
DES was observed. The dosages ranged from 40 or 80V mm
<sup>-1</sup>
for nematodes to 200 V mm
<sup>-1</sup>
for fungi.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">DES-generated energy reduced survival of the soilborne pathogens P. cinnamomi and V. dahlia, and the plant-parasitic nematodes M. hapla and G. ellingtonae. The application of this technology to a field setting remains to be considered. Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Pest Management Science published by Wiley Periodicals, Inc. on behalf of © 2020 Society of Chemical Industry.</AbstractText>
<CopyrightInformation>Published 2020. This article is a U.S. Government work and is in the public domain in the USA. Pest Management Science published by Wiley Periodicals, Inc. on behalf of © 2020 Society of Chemical Industry.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Riga</LastName>
<ForeName>Ekaterini</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Lisi Global Inc, Richland, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Crisp</LastName>
<ForeName>Jason D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>Lisi Global Inc, Richland, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McComb</LastName>
<ForeName>Gordon J</ForeName>
<Initials>GJ</Initials>
<AffiliationInfo>
<Affiliation>Lisi Global Inc, Richland, WA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weiland</LastName>
<ForeName>Jerry E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>USDA-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zasada</LastName>
<ForeName>Inga A</ForeName>
<Initials>IA</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-6603-3073</Identifier>
<AffiliationInfo>
<Affiliation>USDA-Agricultural Research Service Horticultural Crops Research Unit, Corvallis, OR, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Pacific Northwest National Laboratory</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Pest Manag Sci</MedlineTA>
<NlmUniqueID>100898744</NlmUniqueID>
<ISSNLinking>1526-498X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017187" MajorTopicYN="Y">Tylenchida</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020172" MajorTopicYN="Y">Verticillium</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">directed energy system</Keyword>
<Keyword MajorTopicYN="N">fungi</Keyword>
<Keyword MajorTopicYN="N">nematodes</Keyword>
<Keyword MajorTopicYN="N">sustainable control</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>07</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>01</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31943776</ArticleId>
<ArticleId IdType="doi">10.1002/ps.5745</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Atwood D and Paisley-Jones C, Pesticides Industry Sales and Usage - 2008-2012 Market Estimates. https://www.epa.gov/sites/production/files/2017-01/documents/pesticides-industry-sales-usage-2016_0.pdf [5 February 2019]</Citation>
</Reference>
<Reference>
<Citation>Briggs H, New supplies of nematicide Vydate not available in time for 2016 potato planting. https://www.fginsight.com/news/news/new-supplies-of-nematicide-vydate-not-available-in-time-for-2016-potato-planting-6464 [5 February 2019]</Citation>
</Reference>
<Reference>
<Citation>Garrard B, Limited availability of telone products for 2009 growing season. APS Crop Protection and Management Collection, Plant Management Network. http://www.plantmanagementnetwork.org/pub/php/news/2009/TELONE [13 December 2018]</Citation>
</Reference>
<Reference>
<Citation>Mitkowski NA and Abawi GS, Root-knot nematodes. https://doi.org/10.1094/PHI-I-2003-0917-01 (2003). [1 December 2018]</Citation>
</Reference>
<Reference>
<Citation>Crisp JD, Riga E and McComb GJ, Method and apparatus for the management of a soil pest. US Patent US9936686B2 (2018).</Citation>
</Reference>
<Reference>
<Citation>Burgess TI, Scott JK, Mcdougall KL, Stukely MJ, Crane C, Dunstan WA et al., Current and projected global distribution of Phytophthora cinnamomi, one of the world's worst plant pathogens. Global Change Biol 23:1661-1674 (2017).</Citation>
</Reference>
<Reference>
<Citation>Hausbeck M, Phytophthora, films and fumigation. https://www.canr.msu.edu/news/phytophthora_films_and_fumigants. [31 January 2019]</Citation>
</Reference>
<Reference>
<Citation>Klosterman SJ, Atallah ZK, Vallad GE and Subbarao KV, Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39-62 (2009).</Citation>
</Reference>
<Reference>
<Citation>Wheeler DL and Johnson DA, Verticillium dahliae infects, alters plant biomass, and produces inoculum on rotation crops. Ecol Epidemiol 106:602-613 (2016).</Citation>
</Reference>
<Reference>
<Citation>Dung JKS and Weiland J, Verticillium wilt in the Pacific Northwest, in Pacific Northwest Plant Disease Management Handbook. Oregon State University, Corvallis, OR. https://pacificnorthwesthandbooks.org/node/405. [1 December 2018]</Citation>
</Reference>
<Reference>
<Citation>Jones JT, Haegeman A, Danchin EGT, Gaur HS, Helder J, Jones MGK et al., Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946-961 (2013).</Citation>
</Reference>
<Reference>
<Citation>Gugino BK, Abawi GS and Ludwig JW, Damage and management of Meloidogyne hapla using oxamyl on carrot in New York. J Nematol 38:483-490 (2006).</Citation>
</Reference>
<Reference>
<Citation>Malek CJ, Influence of Pratylenchus penetrans on the colonization of potato by Verticillium dahliae. University of Wisconsin, Madison, WI, USA, p. 146 (1994).</Citation>
</Reference>
<Reference>
<Citation>Back MA, Haydock PPJ and Jenkinson P, Disease complexes involving plant parasitic nematodes and soilborne pathogens. Plant Pathol 51:683-697 (2002).</Citation>
</Reference>
<Reference>
<Citation>Nicol JM, Turner SJ, Coyne DL, den Nijs L and Tahna Maafi Z, Current nematode threats to world agriculture, in Genomics and Molecular Genetics of Plant Nematode Interaction, ed. by Jones J, Gheysen G and Fenoll C. Springer, Dordrecht, pp. 21-41 (2011).</Citation>
</Reference>
<Reference>
<Citation>Castelli L, Ramsay G, Bryan G, Neilson SJ and Phillips MS, New sources of resistance to the potato cyst nematodes Globodera pallida and G. rostochiensis in the commonwealth potato collection. Euphitica 129:377-386 (2003).</Citation>
</Reference>
<Reference>
<Citation>Handoo ZA, Carta LK, Skantar AM and Chitwood DJ, Description of Globodera ellingtonae n. sp. (Nematoda: Heteroderidae) from Oregon. J Nematol 44:40-57 (2012).</Citation>
</Reference>
<Reference>
<Citation>Phillips WS, Kieran SR and Zasada IA, The relationship between temperature and development in Globodera ellingtonae. J Nematol 47:283-289 (2015).</Citation>
</Reference>
<Reference>
<Citation>Weiland JE, Beck BR and Davis A, Pathogenicity and virulence of Pythium species obtained from forest nursery soils on Douglas-fir seedlings. Plant Dis 97:744-748 (2013).</Citation>
</Reference>
<Reference>
<Citation>Kannwischer ME and Mitchell DJ, The influence of a fungicide on the epidemiology of black shank of tobacco. Phytopathology 68:1760-1765 (1978).</Citation>
</Reference>
<Reference>
<Citation>Pinkerton JN, Ivors KL, Miller ML and Moore LW, Effect of soil solarization and cover crops on populations of selected soilborne plant pathogens in western Oregon. Plant Dis 84:952-960 (2000).</Citation>
</Reference>
<Reference>
<Citation>Weiland JE, Benedict C, Zasada IA, Scagel CR, Beck BR, Davis A et al., Late-summer disease symptoms in western Washington red raspberry fields associated with co-occurrence of Phytophthora rubi, Verticillium dahliae, and Pratylenchus penetrans, but not Raspberry bushy dwarf virus. Plant Dis 102:938-947 (2018).</Citation>
</Reference>
<Reference>
<Citation>Butterfield EJ and DeVay JE, Reassessment of soil assays for Verticillium dahliae. Phytopathology 64:48-51 (1977).</Citation>
</Reference>
<Reference>
<Citation>Kabir Z, Bhat RG and Subbarao KV, Comparison of media for recovery of Verticillium dahliae from soil. Plant Dis 88:49-55 (2004).</Citation>
</Reference>
<Reference>
<Citation>Hussey RS and Barker KR, A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep 57:1025-1028 (1973).</Citation>
</Reference>
<Reference>
<Citation>LaMondia JA and Brodie BB, Extraction of cyst nematodes from organic soil. J Nematol 19:104-107 (1987).</Citation>
</Reference>
<Reference>
<Citation>Widdowson E and Wiltshire GH, The potato eelworm hatching factor. Ann Appl Biol 46:95-101 (1958).</Citation>
</Reference>
<Reference>
<Citation>Kroese D, Zasada IA and Ingham RE, Comparison of Meldola's blue staining and hatchingassay with potato root diffusate for assessment of Globodera sp egg viability. J Nematol 43:182-186 (2011).</Citation>
</Reference>
<Reference>
<Citation>Johnson TC, Versteeg RJ, Ward A, Day-Lewis FD and Revil A, Improved hydrogeophysical characterization and monitoring through parallel modeling and inversion of time-domain resistivity and induced polarization data. Geophysics 75:WA27-WA41 (2010). https://doi.org/10.1190/1.3475513</Citation>
</Reference>
<Reference>
<Citation>Woodward JE, Wheeler TA, Cattaneo MG, Russell SA and Baughman TA, Evaluation of soil fumigants for management of Verticillium wilt of peanut in Texas. Plant Health Prog (2011).</Citation>
</Reference>
<Reference>
<Citation>Parra G and Ristaino JB, Resistance to Mefenoxam and Metalaxyl among field isolates of Phytophthora capsici causing Phytophthora blight of bell pepper. Plant Dis 85:1069-1075 (2001).</Citation>
</Reference>
<Reference>
<Citation>Thompson JM and Tylka GL, Differences in hatching of Heterodera glycines egg-mass and encysted eggs in vitro. J Nematol 29:315-321 (1997).</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Oregon</li>
<li>Washington (État)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Riga, Ekaterini" sort="Riga, Ekaterini" uniqKey="Riga E" first="Ekaterini" last="Riga">Ekaterini Riga</name>
</region>
<name sortKey="Crisp, Jason D" sort="Crisp, Jason D" uniqKey="Crisp J" first="Jason D" last="Crisp">Jason D. Crisp</name>
<name sortKey="Mccomb, Gordon J" sort="Mccomb, Gordon J" uniqKey="Mccomb G" first="Gordon J" last="Mccomb">Gordon J. Mccomb</name>
<name sortKey="Weiland, Jerry E" sort="Weiland, Jerry E" uniqKey="Weiland J" first="Jerry E" last="Weiland">Jerry E. Weiland</name>
<name sortKey="Zasada, Inga A" sort="Zasada, Inga A" uniqKey="Zasada I" first="Inga A" last="Zasada">Inga A. Zasada</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000240 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000240 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31943776
   |texte=   Directed energy system technology for the control of soilborne fungal pathogens and plant-parasitic nematodes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31943776" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024